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Abstract: In this study, we calibrate a Spatial Light Modulator and study
its optical properties before using the device with synthetic holograms to
shape light beams.
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1. Introduction

Liquid Cristal Display (LCD) modulate a back-scattering light in order to display a desired
pattern onto the screen, resulting in the polarization of the light emitted by the device. While
this is a widely used application of liquid cristals, the ability to shape beams are widely used
in applied optics. In microscopy, research teams uses Spatial Light Modulators (SLM) to trap
aerosols, move them around and even mix aerosols between themselves to study their prop-
erties with variating conditions such as humidity, temperature, chemical concentrations [4].
Beam shaping with SLM are used in microscopy to generate self-healing beams, and are also
used in telecommunications [5] for optical cross connect devices. SLM are also used in cine-
matographic projectors and in personnal projector as well.

Spatial Light Modulators are of two types : liquid cristals and MEMs devices such as micro-
mirrors. In this study, we will be working with liquid cristal devices. If MEMs devices can only
modulate light in amplitude, liquid cristals can be configured to modulate both amplitude and
phase of a lightbeam. Polarization of light is the characteristic that a liquid crystal modifies.
A spatial light modulator consists of an array of liquid crystals. Each pixel is controlled by
an electric voltage, so each pixel can independently modify the polarization of the light wave
passing through it

In the first section of this study, the amplitude modulation, which is usually used for imagery,
will be presented; and in the second section, the modulation of the phase which is often used
for holography and diffractive imaging, will be presented. At the beginning of this section, a
short description of the calibration of the phase modulation will be provided to the reader.



2. Amplitude modulation

In this section, because we work on the modulation of amplitude, we introduce a Laser Speckle
Reducer (LSR) before the first polarizer in order to disminish the coherence of the laser beam
and smooth the image and the effects of diffractive plate defaults.

Liquid cristals

The following figures illustrate the structure of a liquid crystal pixel; they are taken from the
documentation of the Holoeye SLM.

In the absence of applied voltage, the orientation of the molecules follows a helical structure.
Between the orientation of the molecules on the input face and that on the output face, the
rotation is 90°. Figure 1a illustrates this property.

When a voltage is applied, the orientation of the molecules is altered. Figure b illustrates this
effect for three cases. In case (A), no voltage is applied, and the orientation of the molecules
rotates while remaining in the plane orthogonal to the propagation axis. In case (B), a non-zero
voltage is applied, and the molecules tilt in a direction different from the plane orthogonal to
the propagation axis. Finally, in case (C), where a high voltage is applied, the central molecules
tilt in the direction of the propagation axis.

(a) Nematic pixel (b) Effect of voltage

Fig. 1: Nematic pixel principle

The molecules that compose the liquid crystals are anisotropic and confer birefringence prop-
erties. Liquid crystals are birefringent materials, generally uniaxial, and thus the ordinary re-
fractive index and extraordinary refractive index are distinguished to describe light propagation
within the liquid crystal cell. The controlled orientation of the molecules allows modification
of the extraordinary index of the cell, as shown in the principle diagram of Figure 2.

The propagation in the liquid crystal cell can therefore be modeled as a stack of very thin
phase plates, with a different orientation as the propagation progresses.

Fig. 2: Nematic pixel indices under input voltage. no is the ordinary indice, ne is the ordinary
indice, and nea is the apparent extraordinary indice



Amplitude calibration

The first step is to measure the “Twist” angle of the SLM, which can be done with a polarizer
and an analyzer. Because the light of the laser is already polarized, the first polarizer weaken
the amplitude of the incoming laser. In order for the amplitude to remain the same, even when
changing the entry polarization, a half-wave plate is added right after the input polarizer (see
Fig. 3).

Fig. 3: Calibration system

The effect of a half-wave plate after the polarizer is to introduce a rotation R = 2θ , where θ

is the angle between the polarizer and the quarter-wave plate.
With the SLM turned off, and in the configuration θP = 90° and θλ/2 =−45°, an extinction

is observed for θA = 0°, and maximum illumination is observed for θA = 90°. The orientation
of the half-wave plate θλ/2 =−45° results in a horizontal polarization at the input of the SLM,
with orientation R = 90°. Therefore, the effect of the SLM on the polarization is a rotation of
R =−90°, equal to the “Twist” angle.

With the SLM turned on, applying a command of NRight = 0 (black) and NLe f t = 255 (white),
a contrast inversion is observed on the camera (see Fig. ). This indicates that the black com-
mand rotates the polarization (by 90°) and the white command corresponds to zero voltage
unaffecting the liquid cristals.

(a) Input command (b) Output (contrast inversion)

Fig. 4: Effect of voltage onto the output figure, before artificial inversion

By rotating the analyzer by 90°, the same pattern as the command is observed. One can also
click “inverse command” to get the same effect.



Contrast

The polarizer is still set to θP = 90°, with NRight = 0 (black) and NLe f t = 255 (white). The
analyzer is placed at θA = 0°, and the grayscale value on the image is recorded every 10° using
”Polarization Analysis”: a large rectangle is selected in each zone to average the grayscale level.
The intensity received by the camera on the left and right sides is plotted as a function of the
angle read on the analyzer.

(a) Intensity of each region (b) Contrast between regions

Fig. 5: Intensity and Contrast resulting of a black and white command

We focus on the amplitude modulation on the left and right sides. The contrast allows us to
eliminate the dependency on the integration time. The position of the analyzer axis to achieve
maximum contrast is θ = 60°. The position of the polarizer to achieve the brightest image for
NRight = 0 (black) is 30° (to obtain white on the camera), and for NLe f t = 255 (white) it is −85°
(to obtain white on the camera).

The evolution of the intensity, converted into grayscale by the camera, follows a cos2(θ) law.
Indeed, Malus’ law states that for a polarizer:

I(θ)
I0

= cos2(θ) (1)

The SLM only rotates the polarization; it acts as a rotator for each pixel. By rotating the
analyzer, the intensity variation follows the cos2 law of a polarizer, where the angle is the one
between the analyzer nand the SLM, which is equivalent to the angle between the analyzer and
the polarizer (90° introduced twice throughthe half-wave plate and the SLM).

Here, the angle corresponds to the values read on the polarizer and analyzer, using the x-axis
as the reference (subtracting 90° would give the polarizer’s reference).

Ellipticity

We have:

ε = arctan
(

Emin

Emax

)
= arctan

(√
Imin

Imax

)
(2)

The polarization at the output of the SLM is not linear because there is never total extinction.
It is not circular either due to amplitude modulation. The polarization is elliptical, with stronger
modulation for NG= 0. It is close to being linear on the left side, where the intensity modulation
is much more significant than on the right side, resulting in low ellipticity for NG = 0.



(a) Ellipticity (computed) (b) Ellipticity (software)

Fig. 6: Ellipticity measurement

Gray level linearity

The following values are obtained based on the intensity modulation curve from Q4:

Fig. 7: Linearity of commanded intensity

This time, we position ourselves at θ = 60°, where the contrast is maximal, and then we vary
the gray levels from 0 to 255 in steps of 20.

Thus, on both the left and right sides, the response is the same for gray level commands from
0 to 255. There is a correspondence between low and high gray levels for a given exposure
time. What interests us is the linearity of the response. The response of the SLM is not linear
between the applied and measured gray levels. However, for higher gray levels starting from
140, the response becomes linear.

If the SLM only modified the polarization orientation, we would observe a periodic nonlinear
curve, typically corresponding to the square of a sinusoid, depending on the detection based on
Malus’s law of polarizers.

3. Phase modulation

To observe diffraction, one should remove the Laser Speckle Reducer, to restore the phase of
the lightbeam, anbd one should then oberve diffraction produced by defaults of the lens or by
dust. The lens L2 should be then placed on the setup so that the Fourier plane is in the detector’s
plane. We remind that fL2 = 120mm. Withtout any pattern sent to the SLM, the light interfers
with a grating of uniform pitch within horizontal or vertical direction of given pixel pitch pp
which is linked to the size of the liquid cristal grating, with different dimensions in the x and y
directions, but with a padding that makes every pixel squared.



Diffraction

One can retrieve the pixel pitch with the help of the diffraction formula and the spacing between
to bright orders on the detector’s plane. We have

sin(θ) =
λ

pp
=

∆x
f ′
∣∣
Fourier Plane (3)

Since we measure ∆x = 306px, and since the pixel pitch of the camera is 5,2µm,we compute
a pixel pitch equal to 47µm. The datasheet provided a value of 32µm, and we suggest that the
difference between the two, above 40%, is due to the padding since the pattern in Fourier’s
plane is symetric in both x and y directions, as can be seen on Fig. 8a.

(a) Fourier’s plane (b) Horizontal cut

Fig. 8: Measurement of the pixel pitch of the liquid cristal

Phase calibration

We introduce two holes according to Young’s experiment after the SLM, and oberve fringed
interferences overlayed onto each diffraction orders. We zoom on the brighter, order 0. Accord-
ing to the pattern sent to the SLM, the fringes are horizontally shifted, as can be seen on Fig. 9
from [3].

Fig. 9: Phase shift with command input

The SLM changes the phase of the incident lightbeam, acccording to the input command of
grey level, and we suppose the relationship between grey level and phase modulation linear.
Because we chose the limitation between the blank region (255) and black region (0) between
the two holes, one receive light of phase ϕspace +ϕ255 while the other receive light with phase
ϕspace+ϕ0. We choose the command (0, 255) as the reference. We oberve the shift produced by
inversing the command, using (255, 0), which produces a shift of π for the phase, λ/2 for the
optical path difference (OPD). With the intermediate command, using (0, 0), we oberve a shift



of π/2 for the phase, λ/4 for the OPD. We thus could use the command (0, 0) as the reference.
(We will not in the following)

By running the automated command “Calibration du déphasage”, we can measure the phase
shift for a linear shift of grey level of user defined gap. We expect it to be linear and going from
0 rad to 2π rad. Fig. 10 present the result of this measurement.

Fig. 10: Linearity of commanded intensity

We observe linearity starting at grey level of 60, and the phase shift only goes from 0 rad to
3π/4 rad approximately. This will produce artifacts in the diffraction produced by the SLM in
the case were the input command was computed on the 0 rad to 2π rad range (which is the case
when producing synthetic holograms, as can be seen later on)

At this point, it is important to notice that the computed phase shift and OPD are linked to
the wavelength of the input laser according to

δOPD =
2π∆ϕ

λ
(4)

So, with a green laser emitting at 533nm, the shifts would be larger.

Phase masks

The goal of this subsection is to choose one grating to separate the information between the
different orders of diffraction, of a synthetic hologram that will be defined later. We can choose
either a rectangular grating or a blased grating. The transmission t(x) = e− jΦ(x) of the grating
is periodic and can be expressed as a convolution product with a Dirac comb:

t(x) = (m⋆ IIIp)(x)

where the elementary pattern is denoted m(x). This results in a series of bright points spaced
proportionally to 1

P .



Blased mask
The intensity of each bright point, i.e., each diffraction order k, is proportional to the coeffi-

cient Ak:

Ak =

∣∣∣∣ 1
P

m̃
(

k
P

)∣∣∣∣2 =
∣∣∣∣∣∣
sin

(
ΦM

2 +πk
)

ΦM
2 +πk

∣∣∣∣∣∣
2

If the modulation depth is less than 2π , the measurement of respectively, order 0 an order 1:

A0 =

∣∣∣∣∣∣
sin

(
ΦM

2

)
ΦM

2

∣∣∣∣∣∣
2

A1 =

∣∣∣∣∣∣
−sin

(
ΦM

2

)
ΦM

2 +π

∣∣∣∣∣∣
2

can allow retrieving the value of ΦM .
In the case of a phase mask created by an SLM, the phase shift profile is modified by pixela-

tion. For example, instead of a linear phase shift, steps are obtained. This time, the elementary
pattern, named n(x) can be expressed from the previous pattern m(x) as:

n(x) = ((m · IIIL)⋆RectL)(x)

The diffraction pattern will thus correspond to that of the continuous grating, periodicized

and modulated by
∣∣∣R̃ectL(ν)

∣∣∣2, as can be seen on Fig. 11a.

(a) Blased mask, gap 5 (b) Blased mask, gap 20

Fig. 11: Diffraction produced by blased masks

Because the available range for the phase is only [0,3/π/4], we observe artifacts located
around the diffraction orders 0 and ±1. The more important the gap, the closer the diffraction
orders. Indeed, their spacing is proportional to the inverse of the gap.

Rectangular mask
As detailed in the Annexe section, the first term in the expression of m̃(ν) is null for even

values of k, except 0. For odd terms, the magnitude of this first term equals P
kπ

:

Ak =
2

k2π2 · (1− cos(ΦM))

The coefficient corresponding to order 0 has the expression:

A0 =

(
cos

(
ΦM

2

))2

=
1
2
(1+ cos(ΦM))



(a) Squared mask, gap 5 (b) Squared mask, gap 20

Fig. 12: Diffraction caused by rectangular masks

For a maximal phase shift of ΦM = 2π , only order 0 is non-zero. Conversely, for a phase shift
depth ΦM = π , order 0 is null. Because the SLM modulates the phase approximately between
0 and π/2 rad the blased grating is more appropriate. Indeed, in the theoretical case where the
phase could be modulated form 0 to 2π , we would oberve very bright intensity on the order
−1 for the balsed mask and 0 for the rectangular one, thus we will choose the blased mask for
separating the information. Moreover, the rectangular mask would introduce more artifacts, due
to its large harmonic constituents, that would decrease the quality of the separation here with a
SLM blocked to [0,3/π/4] in phase modulation.

In the end, because the camera is only sensing intensities, and because we know that I ∝

|E|2 = |A(σ ,µ)× exp(iΦ(σ ,µ))|2 = A2, the information of the phase is lossed, but its role in
separating the different orders is still useful.

Synthetic holograms

Thanks to Gerchberg-Saxton’s algorithm that codes a picture (Fig. 14a) into a phase mask
(Fig. 13a) that will reconstruct the picture in Fourier’s plane after illuminating the mask with
a coherent lightbeam, we can encode a particular image and study its reconstruction using the
SLM as the physical mask.

(a) Gerchberg-Saxton’s encoding (b) Fourier’s plane

Fig. 13: Reconstruction of a picture

We obtain Fig. 13b on which the reconstructed picture is duplicated between order =1 and
-1 and overlayed. We thus introduce a blased grating through a convolution with the output of
Gerchberg-Saxton’s algorithm and obtain Fig. 14b [3].



(a) Original picture (b) Fourier’s plane (shifted)

Fig. 14: Reconstruction of a picture (shifted)

4. Conclusion

The ultimate goal of this study was to reconstruct the image of a picture encoded with
Gerchberg-Saxton’s algorithm onto a Spatial Light Modulator. To do that, we have first es-
tablished the behavior of the liquid cristal SLM used, and particularly the way it changes the
polarization of light, working with amplitude modulation. We ultimately computed the elliptic-
ity of the output light. Then we studied the SLM in terms of phase modulation, and computed
the pixel pitch of the liquid cristals thanks to the diffraction formula. We calibrated the SLM in
terms of phase modulation for a given grey level command, and understood the impact of phase
modulation total range on the influence of artifacts on the final image, and the role of gratings
to separate overlayed duplicated images between diffraction orders. The study of two types of
gratings, rectangular and blased, ultimately allowed to choose the blased one to separate the
two diffracted reconstructed images of the original picture.
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5. Annexe

The transmission t(x) = e− jΦ(x) of the grating is periodic and can be expressed as a convolution
product with a Dirac comb:

t(x) = (m⋆ IIIp)(x)

where the elementary pattern is denoted m(x).

(a) Ellipticity (computed) (b) Ellipticity (software)

Fig. 15: Ellipticity measurement

Diffraction by such a grating allows obtaining, in the Fourier plane, a field proportional to
the Fourier transform of the grating, which can be expressed, limiting to a single direction ν ,
as:

t̃(ν) =
1
P
· m̃(ν) · III 1

P
(ν)

This results in a series of bright points spaced proportionally to 1
P . The intensity of each

bright point, i.e., each diffraction order k, is proportional to the coefficient Ak:

Ak =

∣∣∣∣ 1
P

m̃
(

k
P

)∣∣∣∣2
In the case of the grating shown in Figure 4.9, the expression of the Fourier transform m̃(ν)

of the pattern m(x) is given by:

m̃(ν) =
∫ P

0
e− j ΦM

ρ
·x · e− j2πνx dx

This Fourier transform can be rewritten as a dilated and shifted sinc function:

m̃(ν) = Pe− j ΦM
2 · e− jπνP sinc

(
P
(

ΦM

2πP
+ν

))
The intensities of the different diffraction orders k are then proportional to:

Ak =

∣∣∣∣∣∣
sin

(
ΦM

2 +πk
)

ΦM
2 +πk

∣∣∣∣∣∣
2

If the modulation depth is less than 2π , the measurement of order 0:

A0 =

∣∣∣∣∣∣
sin

(
ΦM

2

)
ΦM

2

∣∣∣∣∣∣
2



of order 1:

A1 =

∣∣∣∣∣∣
−sin

(
ΦM

2

)
ΦM

2 +π

∣∣∣∣∣∣
2

can allow retrieving the value of ΦM .

(a) Ellipticity (computed) (b) Ellipticity (software)

Fig. 16: Ellipticity measurement

In the case of a phase mask created by an SLM, the phase shift profile is modified by pix-
elation. For example, instead of a linear phase shift, steps are obtained, as shown in Figure
4.12.

The transmission t(x) = e− jΦ(x) of the grating remains periodic and can be expressed as a
convolution product with a Dirac comb:

t(x) = (n⋆ IIIP)(x)

where the elementary pattern n(x) can be expressed from the previous pattern m(x) as:

n(x) = ((m · IIIL)⋆RectL)(x)

where the rectangle function RectL(x) is defined as:

RectL(x) =

{
1 if x ∈ [0,L]
0 otherwise

The Fourier transform of the pattern n(x) can thus be written as:

ñ(ν) =
(

m̃⋆
1
L

III 1
L

)
(ν) · R̃ectL(ν)

The diffraction pattern will thus correspond to that of the continuous grating, periodicized

and modulated by
∣∣∣R̃ectL(ν)

∣∣∣2. In the case of a modulation depth equal to 2π , the diffraction
orders are represented in Figure 4.13.

Rectangular Mask

m̃(ν) =
∫ P

2

0
e− jΦM · e− j2πνx dx+

∫ P

P
2

e− j2πνx dx

=
−
[
e− jπνP −1

]
j2πν

· e− jΦM · e− jπν
P
2 + j ΦM

2

[
2cos

(
−πν

P
2
+

ΦM

2

)]



The first term in the expression of m̃(ν) is null for even values of k, except 0. For odd terms,
the magnitude of this first term equals P

kπ
:

Ak =

∣∣∣∣ 1
kπ

·
[

2cos
(
−kπ

2
+

ΦM

2

)]∣∣∣∣2
Ak =

2
k2π2 · (1− cos(ΦM))

To calculate order 0, the first term in the expression of m̃(ν) must be expressed:

−
[
e− jπνP −1

]
j2πν

= e− j πνP
2 · P

2
·

sin
(

πνP
2

)
πνP

2

The magnitude of this first term equals P
2 for ν = 0. The coefficient corresponding to order 0

has the expression:

A0 =

(
cos

(
ΦM

2

))2

=
1
2
(1+ cos(ΦM))

For a maximal phase shift of ΦM = 2π , only order 0 is non-zero. Conversely, for a phase
shift depth ΦM = π , order 0 is null.
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